List of sources for experimental database

Source:

Positives

Negatives

Kd<200

Kd>200

Comparat.

Total

Ref.

DBSFB01

28

292

5

1

105

431

[1]

DFSLBHKB05

88

133

0

0

200

421

[2]

SDBB99

69

103

25

4

294

495

[3]

DSB00

70

388

0

0

351

809

[4]

BMB03

9

27

7

12

0

55

[5]

BFS02

1024

0

0

0

0

1024

[6]

BJC02

0

0

25

295

0

320

[7]

BKSHRP03

0

0

33

0

0

33

[8]

CGU99

5

0

0

0

0

5

[9]

CK94a

67

0

0

0

0

67

[10]

CK94b

0

9

10

0

0

19

[11]

DB92

0

0

0

0

9

9

[12]

DB93

0

1

5

3

0

9

[13]

GP97

21

0

3

0

0

24

[14]

ICK97

0

0

4

0

0

4

[15]

IKC01

0

0

7

0

42

49

[16]

JKW94

0

0

18

0

0

18

[17]

KFM05

40

0

0

0

0

40

[18]

LXC02

32

0

0

0

0

32

[19]

NGC92

0

0

140

0

0

140

[20]

PDB*

16

0

0

0

0

16

[21]

RP94

0

0

12

0

0

12

[22]

RUMIWCKC03

0

0

8

0

0

8

[23]

TB90

11

0

0

0

0

11

[24]

WGRP99

0

0

6

0

0

6

[25]

WYB95

0

0

24

2

0

26

[26]

Sum:

1480

953

332

317

1001

4083

 

Filtered:

1086

835

226

117

914

3178

 

 

* List of co-crystal structures obtained from PDB: 1A1F, 1A1G, 1A1H, 1A1I, 1A1J, 1A1K, 1A1L, 1AAY, 1G2D, 1G2F, 1JK1, 1JK2, 1MEY, 1P47, 1ZAA, 1F2I, 1LLM, 2DRP, 1UBD, and 2GLI.

 

1.         Dreier, B., et al., Development of zinc finger domains for recognition of the 5'-ANN-3' family of DNA sequences and their use in the construction of artificial transcription factors. J Biol Chem, 2001. 276(31): p. 29466-78.

2.         Dreier, B., et al., Development of zinc finger domains for recognition of the 5'-CNN-3' family DNA sequences and their use in the construction of artificial transcription factors. J Biol Chem, 2005. 280(42): p. 35588-97.

3.         Segal, D.J., et al., Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5'-GNN-3' DNA target sequences. Proc Natl Acad Sci U S A, 1999. 96(6): p. 2758-63.

4.         Dreier, B., D.J. Segal, and C.F. Barbas, 3rd, Insights into the molecular recognition of the 5'-GNN-3' family of DNA sequences by zinc finger domains. J Mol Biol, 2000. 303(4): p. 489-502.

5.         Blancafort, P., L. Magnenat, and C.F. Barbas, 3rd, Scanning the human genome with combinatorial transcription factor libraries. Nat Biotechnol, 2003. 21(3): p. 269-74.

6.         Benos, P.V., A.S. Lapedes, and G.D. Stormo, Probabilistic code for DNA recognition by proteins of the EGR family. J Mol Biol, 2002. 323(4): p. 701-27.

7.         Bulyk, M.L., P.L. Johnson, and G.M. Church, Nucleotides of transcription factor binding sites exert interdependent effects on the binding affinities of transcription factors. Nucleic Acids Res, 2002. 30(5): p. 1255-61.

8.         Bae, K.H., et al., Human zinc fingers as building blocks in the construction of artificial transcription factors. Nat Biotechnol, 2003. 21(3): p. 275-80.

9.         Cook, T., B. Gebelein, and R. Urrutia, Sp1 and its likes: biochemical and functional predictions for a growing family of zinc finger transcription factors. Ann N Y Acad Sci, 1999. 880: p. 94-102.

10.       Choo, Y. and A. Klug, Toward a code for the interactions of zinc fingers with DNA: selection of randomized fingers displayed on phage. Proc Natl Acad Sci U S A, 1994. 91(23): p. 11163-7.

11.       Choo, Y. and A. Klug, Selection of DNA binding sites for zinc fingers using rationally randomized DNA reveals coded interactions. Proc Natl Acad Sci U S A, 1994. 91(23): p. 11168-72.

12.       Desjarlais, J.R. and J.M. Berg, Toward rules relating zinc finger protein sequences and DNA binding site preferences. Proc Natl Acad Sci U S A, 1992. 89(16): p. 7345-9.

13.       Desjarlais, J.R. and J.M. Berg, Use of a zinc-finger consensus sequence framework and specificity rules to design specific DNA binding proteins. Proc Natl Acad Sci U S A, 1993. 90(6): p. 2256-60.

14.       Greisman, H.A. and C.O. Pabo, A general strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites. Science, 1997. 275(5300): p. 657-61.

15.       Isalan, M., Y. Choo, and A. Klug, Synergy between adjacent zinc fingers in sequence-specific DNA recognition. Proc Natl Acad Sci U S A, 1997. 94(11): p. 5617-21.

16.       Isalan, M., A. Klug, and Y. Choo, A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter. Nat Biotechnol, 2001. 19(7): p. 656-60.

17.       Jamieson, A.C., S.H. Kim, and J.A. Wells, In vitro selection of zinc fingers with altered DNA-binding specificity. Biochemistry, 1994. 33(19): p. 5689-95.

18.       Kaplan, T., N. Friedman, and H. Margalit, Ab initio prediction of transcription factor targets using structural knowledge. PLoS Comput Biol, 2005. 1(1): p. e1.

19.       Liu, Q., et al., Validated zinc finger protein designs for all 16 GNN DNA triplet targets. J Biol Chem, 2002. 277(6): p. 3850-6.

20.       Nardelli, J., T. Gibson, and P. Charnay, Zinc finger-DNA recognition: analysis of base specificity by site-directed mutagenesis. Nucleic Acids Res, 1992. 20(16): p. 4137-44.

21.       Berman, H.M., et al., The Protein Data Bank. Nucleic Acids Res, 2000. 28(1): p. 235-42.

22.       Rebar, E.J. and C.O. Pabo, Zinc finger phage: affinity selection of fingers with new DNA-binding specificities. Science, 1994. 263(5147): p. 671-3.

23.       Reynolds, L., et al., Repression of the HIV-1 5' LTR promoter and inhibition of HIV-1 replication by using engineered zinc-finger transcription factors. Proc Natl Acad Sci U S A, 2003. 100(4): p. 1615-20.

24.       Thiesen, H.J. and C. Bach, Target Detection Assay (TDA): a versatile procedure to determine DNA binding sites as demonstrated on SP1 protein. Nucleic Acids Res, 1990. 18(11): p. 3203-9.

25.       Wolfe, S.A., et al., Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code. J Mol Biol, 1999. 285(5): p. 1917-34.

26.       Wu, H., W.P. Yang, and C.F. Barbas, 3rd, Building zinc fingers by selection: toward a therapeutic application. Proc Natl Acad Sci U S A, 1995. 92(2): p. 344-8.