Source: |
Positives |
Negatives |
Kd<200 |
Kd>200 |
Comparat. |
Total |
Ref. |
DBSFB01 |
28 |
292 |
5 |
1 |
105 |
431 |
[1] |
DFSLBHKB05 |
88 |
133 |
0 |
0 |
200 |
421 |
[2] |
SDBB99 |
69 |
103 |
25 |
4 |
294 |
495 |
[3] |
DSB00 |
70 |
388 |
0 |
0 |
351 |
809 |
[4] |
BMB03 |
9 |
27 |
7 |
12 |
0 |
55 |
[5] |
BFS02 |
1024 |
0 |
0 |
0 |
0 |
1024 |
[6] |
BJC02 |
0 |
0 |
25 |
295 |
0 |
320 |
[7] |
BKSHRP03 |
0 |
0 |
33 |
0 |
0 |
33 |
[8] |
CGU99 |
5 |
0 |
0 |
0 |
0 |
5 |
[9] |
CK94a |
67 |
0 |
0 |
0 |
0 |
67 |
[10] |
CK94b |
0 |
9 |
10 |
0 |
0 |
19 |
[11] |
DB92 |
0 |
0 |
0 |
0 |
9 |
9 |
[12] |
DB93 |
0 |
1 |
5 |
3 |
0 |
9 |
[13] |
GP97 |
21 |
0 |
3 |
0 |
0 |
24 |
[14] |
ICK97 |
0 |
0 |
4 |
0 |
0 |
4 |
[15] |
IKC01 |
0 |
0 |
7 |
0 |
42 |
49 |
[16] |
JKW94 |
0 |
0 |
18 |
0 |
0 |
18 |
[17] |
KFM05 |
40 |
0 |
0 |
0 |
0 |
40 |
[18] |
LXC02 |
32 |
0 |
0 |
0 |
0 |
32 |
[19] |
NGC92 |
0 |
0 |
140 |
0 |
0 |
140 |
[20] |
PDB* |
16 |
0 |
0 |
0 |
0 |
16 |
[21] |
RP94 |
0 |
0 |
12 |
0 |
0 |
12 |
[22] |
RUMIWCKC03 |
0 |
0 |
8 |
0 |
0 |
8 |
[23] |
TB90 |
11 |
0 |
0 |
0 |
0 |
11 |
[24] |
WGRP99 |
0 |
0 |
6 |
0 |
0 |
6 |
[25] |
WYB95 |
0 |
0 |
24 |
2 |
0 |
26 |
[26] |
Sum: |
1480 |
953 |
332 |
317 |
1001 |
4083 |
|
Filtered: |
1086 |
835 |
226 |
117 |
914 |
3178 |
|
* List of co-crystal structures obtained from PDB: 1A1F, 1A1G, 1A1H, 1A1I, 1A1J, 1A1K, 1A1L, 1AAY, 1G2D, 1G2F, 1JK1, 1JK2, 1MEY, 1P47, 1ZAA, 1F2I, 1LLM, 2DRP, 1UBD, and 2GLI.
1. Dreier, B., et al., Development of zinc finger domains for recognition of the 5'-ANN-3' family of DNA sequences and their use in the construction of artificial transcription factors. J Biol Chem, 2001. 276(31): p. 29466-78.
2. Dreier, B., et al., Development of zinc finger domains for recognition of the 5'-CNN-3' family DNA sequences and their use in the construction of artificial transcription factors. J Biol Chem, 2005. 280(42): p. 35588-97.
3. Segal, D.J., et al., Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5'-GNN-3' DNA target sequences. Proc Natl Acad Sci U S A, 1999. 96(6): p. 2758-63.
4. Dreier, B., D.J. Segal, and C.F. Barbas, 3rd, Insights into the molecular recognition of the 5'-GNN-3' family of DNA sequences by zinc finger domains. J Mol Biol, 2000. 303(4): p. 489-502.
5. Blancafort, P., L. Magnenat, and C.F. Barbas, 3rd, Scanning the human genome with combinatorial transcription factor libraries. Nat Biotechnol, 2003. 21(3): p. 269-74.
6. Benos, P.V., A.S. Lapedes, and G.D. Stormo, Probabilistic code for DNA recognition by proteins of the EGR family. J Mol Biol, 2002. 323(4): p. 701-27.
7. Bulyk, M.L., P.L. Johnson, and G.M. Church, Nucleotides of transcription factor binding sites exert interdependent effects on the binding affinities of transcription factors. Nucleic Acids Res, 2002. 30(5): p. 1255-61.
8. Bae, K.H., et al., Human zinc fingers as building blocks in the construction of artificial transcription factors. Nat Biotechnol, 2003. 21(3): p. 275-80.
9. Cook, T., B. Gebelein, and R. Urrutia, Sp1 and its likes: biochemical and functional predictions for a growing family of zinc finger transcription factors. Ann N Y Acad Sci, 1999. 880: p. 94-102.
10. Choo, Y. and A. Klug, Toward a code for the interactions of zinc fingers with DNA: selection of randomized fingers displayed on phage. Proc Natl Acad Sci U S A, 1994. 91(23): p. 11163-7.
11. Choo, Y. and A. Klug, Selection of DNA binding sites for zinc fingers using rationally randomized DNA reveals coded interactions. Proc Natl Acad Sci U S A, 1994. 91(23): p. 11168-72.
12. Desjarlais, J.R. and J.M. Berg, Toward rules relating zinc finger protein sequences and DNA binding site preferences. Proc Natl Acad Sci U S A, 1992. 89(16): p. 7345-9.
13. Desjarlais, J.R. and J.M. Berg, Use of a zinc-finger consensus sequence framework and specificity rules to design specific DNA binding proteins. Proc Natl Acad Sci U S A, 1993. 90(6): p. 2256-60.
14. Greisman, H.A. and C.O. Pabo, A general strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites. Science, 1997. 275(5300): p. 657-61.
15. Isalan, M., Y. Choo, and A. Klug, Synergy between adjacent zinc fingers in sequence-specific DNA recognition. Proc Natl Acad Sci U S A, 1997. 94(11): p. 5617-21.
16. Isalan, M., A. Klug, and Y. Choo, A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter. Nat Biotechnol, 2001. 19(7): p. 656-60.
17. Jamieson, A.C., S.H. Kim, and J.A. Wells, In vitro selection of zinc fingers with altered DNA-binding specificity. Biochemistry, 1994. 33(19): p. 5689-95.
18. Kaplan, T., N. Friedman, and H. Margalit, Ab initio prediction of transcription factor targets using structural knowledge. PLoS Comput Biol, 2005. 1(1): p. e1.
19. Liu, Q., et al., Validated zinc finger protein designs for all 16 GNN DNA triplet targets. J Biol Chem, 2002. 277(6): p. 3850-6.
20. Nardelli, J., T. Gibson, and P. Charnay, Zinc finger-DNA recognition: analysis of base specificity by site-directed mutagenesis. Nucleic Acids Res, 1992. 20(16): p. 4137-44.
21. Berman, H.M., et al., The Protein Data Bank. Nucleic Acids Res, 2000. 28(1): p. 235-42.
22. Rebar, E.J. and C.O. Pabo, Zinc finger phage: affinity selection of fingers with new DNA-binding specificities. Science, 1994. 263(5147): p. 671-3.
23. Reynolds, L., et al., Repression of the HIV-1 5' LTR promoter and inhibition of HIV-1 replication by using engineered zinc-finger transcription factors. Proc Natl Acad Sci U S A, 2003. 100(4): p. 1615-20.
24. Thiesen, H.J. and C. Bach, Target Detection Assay (TDA): a versatile procedure to determine DNA binding sites as demonstrated on SP1 protein. Nucleic Acids Res, 1990. 18(11): p. 3203-9.
25. Wolfe, S.A., et al., Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code. J Mol Biol, 1999. 285(5): p. 1917-34.
26. Wu, H., W.P. Yang, and C.F. Barbas, 3rd, Building zinc fingers by selection: toward a therapeutic application. Proc Natl Acad Sci U S A, 1995. 92(2): p. 344-8.